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Abstract. We show that the dynamics of disordered charge density waves (CDWs) and spin density waves
(SDWs) is a collective phenomenon. The very low temperature specific heat relaxation experiments are
characterized by: (i) “interrupted” ageing (meaning that there is a maximal relaxation time); and (ii)
a broad power-law spectrum of relaxation times which is the signature of a collective phenomenon. We
propose a random energy model that can reproduce these two observations and from which it is possible to
obtain an estimate of the glass cross-over temperature (typically Tg ' 100−200 mK). The broad relaxation
time spectrum can also be obtained from the solutions of two microscopic models involving randomly
distributed solitons. The collective behavior is similar to domain growth dynamics in the presence of
disorder and can be described by the dynamical renormalization group that was proposed recently for the
one dimensional random field Ising model [D.S. Fisher, P. Le Doussal, C. Monthus, Phys. Rev. Lett. 80,
3539 (1998)]. The typical relaxation time scales like τ typ ∼ τ0 exp (Tg/T ). The glass cross-over temperature
Tg related to correlations among solitons is equal to the average energy barrier and scales like Tg ∼ 2xξ0∆.
x is the concentration of defects, ξ0 the correlation length of the CDW or SDW and ∆ the charge or
spin gap.

PACS. 05.70.Ln Nonequilibrium and irreversible thermodynamics – 63.50.+x Vibrational states
in disordered systems – 75.30.Fv Spin-density waves

1 Introduction

In spite of several decades of intensive experimental and
theoretical works related to slow relaxation phenomena,
important questions regarding the nature of the low tem-
perature phase of spin glasses have remained unsolved.
Replica symmetry breaking [1] and droplet theory [2,3]
constitute two pictures that were already available in the
80’s. It is a debated question to determine which of these
two visions of the problem does apply to laboratory exper-
iments (see for instance [4]). Recent “memory and chaos”
experiments [5] suggest that a new type of droplet theory
is needed but there exists unsolved questions that have
been the subject of recent works (see for instance [6,7]).
Other approaches have focussed on the description of out-
of-equilibrium ageing dynamics in terms of generalized
fluctuation-dissipation relations [8]. These ideas were orig-
inally developed in the context of spin glass models but
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have been used recently to discuss different systems such
as domain growth dynamics or chaotic flows [9]. It has
been shown recently in reference [10] that the long time
dynamics of domain walls in the one dimensional (1D)
random field Ising model (RFIM) could be described by
a dynamical real space renormalization group (RG). The
dynamical RG is similar to the Dasgupta-Ma RG [11] that
was applied to the 1D random Ising model in a transverse
magnetic field [12] and to the 1D random antiferromag-
netic Heisenberg model [13]. The Dasgupta-Ma RG was
also applied recently to many other random spin mod-
els [12–19]. The general purpose of our article is to use
the dynamical RG to describe the long time collective dy-
namics of disordered charge density waves (CDWs) and
spin density waves (SDWs).

Disordered quasi-one dimensional (quasi 1D) sys-
tems have known a renewed interest recently since
the discovery of several inorganic low dimensional ox-
ides such as CuGeO3 [20–23] (a spin-Peierls com-
pound), PbNi2V2O8 [24] (a Haldane gap compound) and
Y2BaNiO5 [25–30] (a Haldane gap compound). In these
compounds the magnetic sites can be substituted with Zn
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(a non magnetic ion). These substitutions generate
either 3D antiferromagnetism at low temperature (in the
case of CuGeO3 and PbNi2V2O8) or strong 3D anti-
ferromagnetic correlations (in the case of Y2BaNiO5).
In these two types of low dimensional spin mod-
els, the non magnetic defects generate spin-1/2 mo-
ments out of the non magnetic ground state, ei-
ther in the form of solitons in spin-Peierls systems
[31–38], or in the form of “edge” spin-1/2 moments in
Haldane gap systems [39–42]. The available theoretical
description of these systems is based on the Dasgupta-
Ma real space RG [11,43] describing non magnetic defects
in 1D and quasi-1D geometries [30,44,45], and appears to
be in good agreement with experiments.

It has been shown experimentally by some of the
present authors that CDWs and SDWs present slow relax-
ation phenomena at very low temperature [46–48] under
the form of what has been called “interrupted ageing” in
the spin glass literature [49]. In fact there are two glass
cross-over temperatures. One is due to the freezing of the
CDW domains and is observed at relatively high tem-
perature mainly in dielectric susceptibility experiments
and is defined in the usual way for glassy systems as a
separation of the so-called α- and β-relaxation processes
(see Ref. [50]). We are interested here in slow relaxation
phenomena occurring at lower temperature that were
observed in temperature relaxation experiments [46–48].
Slow relaxation in disordered CDWs and SDWs and an-
tiferromagnetism in the spin-Peierls compound CuGeO3

have the common point that in both cases the physics
is related to solitons having a slow dynamics in CDWs
and SDWs (the microscopic time associated to the re-
versal of the soliton can be deduced from experiments
and is τ0 ' 1 s – see Ref. [46–48]), and a fast dynam-
ics in CuGeO3 (no slow relaxation has been reported
in ac-susceptibility experiments – see for instance [32] –
and specific heat relaxation experiments [51]). The large
value of τ0 in CDWs and SDWs is due to energy barri-
ers associated to the dynamics of individual solitons, not
present in CuGeO3. By comparison the microscopic time
τ0 ' 10−12 s in spin glasses corresponds to the reversal
time of an individual spin. We show in this article from
the analysis of quasi 1D strong pinning models that the
dynamics of disordered CDWs and SDWs can be inter-
preted as a collective dynamics of randomly distributed
solitons. This dynamics is similar to a domain growth dy-
namics in the presence of disorder in which a correlation
length ξ(t) is increasing with time. Larger objects have
a slower relaxation because most of the time the energy
barrier associated to a correlated pair of solitons that are
close in space is larger than the energy barriers of the
individual solitons.

It has been shown in references [52–56] from the
analysis of a strong pinning model that there exist
slow relaxation phenomena associated to independent
strong pinning impurities in CDWs. It was also shown
in reference [56] that the explanation based on indepen-
dent impurities requires an artificially large concentration
of impurities (one impurity per unit cell). It is therefore

a relevant question to reexamine the experimental data
and investigate new mechanisms responsible for slow re-
laxation in disordered CDWs and SDWs. More precisely
we address the following questions:

1. In Section 2, we reexamine the slow relaxation ex-
periments in CDWs and SDWs already presented in
references [46–48] and find two features:
(i) An “interrupted ageing” behavior (all relaxation

times are smaller than a maximum relaxation time
τmax).

(ii) A power-law relaxation spectrum signaling the
presence of a broad distribution of relaxation times.

The strong pinning model with independent impuri-
ties proposed in reference [56] has been successful to
explain (i) but it does not explain (ii). In this article
we look for a model that is consistent with (i) and (ii).

2. We propose in Section 3 a phenomenological random
energy model (REM) that is compatible with the slow
relaxation experiments.

3. We show in Section 4 that the experiments can be
qualitatively described as being due to a collective be-
havior in a strong pinning model. A dynamical RG is
used to describe the coupling between the solitonic de-
formations of the CDW at different impurities at vari-
ance with the previous model proposed in reference [56]
where the solitonic defects are independent from each
other.

4. We show in Section 5 that the experiments can also be
qualitatively described by the disordered spin-Peierls
model proposed in references [30,44,45].

2 Experiments

The specific heat and heat relaxation experiments (see
Refs. [46–48]) have been performed at the CRTBT-
Grenoble in a dilution cryostat over the typical tempera-
ture range 80 mK – 2 K on sample mass of a few hundreds
mg. The experiments have been performed with a thermal
transient technique, the sample being loosely connected to
the regulated heat sink via a thermal link. This technique
enables us to send energy in the sample for variable du-
rations, from a pulse of a fraction of seconds up to a long
“waiting time” of 24 h or more. For the thermal transient
experiments reported here, the procedure is the following.
Once the sample is in equilibrium with the heat bath at T0,
one increases slightly the sample temperature to T0+∆T0,
(with ∆T0/T0 ≤ 10%) during a waiting time tw. The en-
ergy source is switched off at tw and the thermal transient
∆T (t, tw) is recorded until the temperature has relaxed to
the initial temperature T0. t is the time elapsed since the
waiting time tw. The temperature relaxation∆T (t, tw) de-
pends on the value of the waiting time (ageing behavior).
If tw is sufficiently large, ∆T (t, tw) does not depend on tw
anymore (“interrupted ageing” behavior, see [49]). One
can start a new run at T0 with a different tw. During a se-
ries of runs at different T0 below 1 K, the sample is never
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Fig. 1. Equilibrium relaxation time spectrum of the incom-
mensurate SDW compound (TMTSF)2PF6. Equation (2) has
been used to obtain the spectrum of relaxation times from
the temperature relaxation signal. The waiting time is long
enough so that thermal equilibrium has been reached for all
temperatures except T = 123 mK. The long-time tail of the
spectrum of relaxation times is well fitted by a power-law:
Peq(log10 t) = 6×t−0.7 for T = 500 mK; Peq(log10 t) = 3×t−0.5

for T = 400 mK; Peq(log10 t) = 8× t−0.5 for T = 270 mK.

re-heated above 1 – 2 K. Due to the exceptional stabil-
ity of the cryostat, the reference temperature T0 can be
regulated within ±2× 10−4 over several tens of hours.

We use a standard procedure to deduce a spectrum
of relaxation times from the temperature relaxation
∆T (t, tw):

∆T (t, tw) =
∫
Ptw (log10 τ)e−t/τd log10 τ. (1)

An approximate expression for the spectrum of relaxation
times can be obtained by replacing exp (−t/τ) by the
θ-function θ(log10 τ − log10 t), which is justified for a
broad relaxation time spectrum:

Ptw (log10 t) ' −
∂∆T (t, tw)
∂ log10 t

· (2)

We first consider the incommensurate SDW com-
pound (TMTSF)2PF6. The spectrum of relaxation times
Ptw (log10 t) obtained from equation (2) is shown in
Figure 1 for equilibrium relaxation and in Figure 2 for
out-of-equilibrium relaxation. In both cases the long time
tail of the spectrum of relaxation times is well described
by a power-law. A similar power-law spectrum is ob-
tained for the incommensurate SDW compound AsF6 (see
Fig. 3) and the incommensurate CDW compound TaS3

(see Figs. 4 and 5).
It is visible on (TMTSF)2PF6 (see Fig. 2) and TaS3

(see Fig. 5) that the exponent of the power-law relaxation
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Fig. 2. Out-of-equilibrium relaxation time spectrum of the
incommensurate SDW compound (TMTSF)2PF6 at the tem-
perature T = 200 mK. Equation (2) has been used to ob-
tain the spectrum of relaxation times from the temperature
relaxation signal. Thermal equilibrium has been reached for
the longest relaxation time (tw = 11 h). The long-time tail
of the spectrum of relaxation times is well fitted by a power-
law: Ptw (log10 t) = 2.6 × t−0.41 for tw = 1 sec; Ptw(log10 t) =
5 × t−0.41 for tw = 1 min; Ptw(log10 t) = 0.8 × t−0.41 for
tw = 10 min.
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Fig. 3. Equilibrium relaxation time spectrum of the incom-
mensurate SDW compound AsF6 (a) for T = 150 mK and
tw = 10 min (�), tw = 1 h (�); (b) for T = 240 mK and
tw = 10 min (◦), tw = 1 h (•). Equation (2) has been used to
obtain the spectrum of relaxation times from the temperature
relaxation signal. The long-time tail of the spectrum is well fit-
ted by a power-law: Peq(log10 t) = 1.2× t−0.6 for T = 150 mK;
Peq(log10 t) = 2.8× t−1.2 for T = 240 mK.

in the out-of-equilibrium dynamics is independent on the
waiting time. The effect of the maximal relation time is
also visible in Figure 5 where the long time relaxation is
faster once equilibrium has been reached.
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Fig. 4. Out-of-equilibrium relaxation time spectrum of the
incommensurate CDW compound TaS3 at the temperature
T = 110 mK. Equation (2) has been used to obtain the
spectrum of relaxation times from the temperature relaxation
signal. The long-time tail of the spectrum is well fitted by
a power-law: Ptw(log10 t) = 0.7 × t−0.32 for tw = 1 sec;
Ptw(log10 t) = 2.5× t−0.32 for tw = 5 min.
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Fig. 5. Out-of-equilibrium relaxation time spectrum of the
incommensurate CDW compound TaS3 at the temperature
T = 165 mK. Equation (2) has been used to obtain the spec-
trum of relaxation times from the temperature relaxation sig-
nal. The long-time tail of the spectrum is well fitted by a
power-law: Ptw(log10 t) = 103 × t−0.8 for tw = 100 msec;
Ptw(log10 t) = 2.3× 103 × t−0.8 for tw = 15 sec; Ptw (log10 t) =
4×103×t−0.8 for tw = 1 min; Ptw(log10 t) = 4×104×t−0.95 for
tw = 20 min; Ptw (log10 t) = 11 × 105 × t−1.25 for tw = 90 min
and tw = 36 h.

3 Random energy-like trap models
of disordered CDWs

We want to describe the slow relaxation experiments in
CDWs and SDWs discussed in Section 2 by a REM-like
trap model similar to references [49,57] (see Fig. 6). The
“trap” energies −Eα are independent random variables
chosen in a distribution p(Eα). The model with p(Eα) =

0

E
ne

rg
y

γ

α

β
δ

ε

Fig. 6. Schematic representation of the phase space of a
trap model. There are no traps having an energy barrier
larger than Emax. The maximum relaxation time is defined
as τmax = τ0 exp (Emax/T ).

p0(Eα) = 1/Tg exp (−Eα/Tg) solved by Bouchaud and
Dean in reference [49] is recalled in Appendix A. We con-
sider here a trap energy distribution in which there is a
maximal energy barrier Emax:

p1(Eα) =
1
Tg

exp (−Eα/Tg)
1− exp (−Emax/Tg)

with 0 < Eα < Emax.

(3)

The model with the trap distribution (3) has two proper-
ties related to the experiments discussed in Section 2:

(i) “Interrupted ageing” behavior due to the presence of
a maximal energy barrier. The “complexity” Ω =
(T/Tg) ln (τerg/τ0) introduced in reference [49] is equal
to Ω = Emax/Tg.

(ii) A power-law distribution of relaxation times for τα <
τmax:

p1(τα) =
1
τ0

T

Tg

1
1− exp (−Emax)

(
τ0
τα

)1+T/Tg

. (4)

3.1 Average and typical relaxation times

The average relaxation time is defined by τav =∫
τP (log10 τ)d log10 τ . For the model with the trap energy

distribution (3) we find

τav

τ0
=

T

T − Tg
1− exp [− (1− Tg/T ) (Emax/Tg)]

1− exp (−(Emax/Tg))
· (5)

The typical relaxation time corresponds to the maximum
of P (log10 τ) and is defined as τ typ = exp [〈〈ln τα〉〉],
where τα is the trapping time in trap α: τα =
τ0 exp (Eα/T ). With the trap energy distribution (3) we
find

τ typ

τ0
= exp

[
Tg
T

[
1− (Emax/Tg)

exp (Emax/Tg)− 1

]]
, (6)

which reduces to τ typ ' τ0 exp [Tg/T ] if Emax is large
compared to Tg. The activated behavior of the typical re-
laxation time is in agreement with previous experimental
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Fig. 7. Evolution of the logarithm of the average relaxation
time log10 (τav/τ0) versus 1/T with Tg = 1 and different values
of Emax.

observations [48]. The variation of the average relaxation
time versus 1/T is shown in Figure 7. If Emax is weak
there is an activated behavior for all values of the temper-
ature, even below Tg. If Emax increases there is a strong
slowing down of the dynamics below Tg and the average
relaxation time is infinite when Emax is infinite in which
case we recover the behavior considered in reference [49].
The average relaxation time plays a central role in the
weak ergodicity breaking scenario for spin-glass models
(see Appendix A) but does not play a relevant role in
slow relaxation in CDWs and SDWs because it cannot be
deduced from experiments in these systems.

3.2 Relaxation below the glass cross-over
temperature Tg

We use the approximations presented in Appendix A.2
to evaluate the dynamical correlation function Π1(t, tw)
associated to the model having a maximal energy barrier
Emax:

Π1(t, tw) '
[

1−
(
T

Tg

)2
](

tw
t

)T/Tg
if tw � t� τmax (7)

Π1(t, tw) ' 1−
(
T

Tg

)2(
t

tw

)1−T/Tg

if t� tw � τmax (8)
Π1(t, tw) ' 1 if t� τmax � tw. (9)

We make two comments:

(i) The system has thermalized before tw if tw � τmax. In
this case, the correlation function decays exponentially
with time: Π(t, tw) ∼ exp (−t/τmax). Within the ap-
proximation used here, this corresponds to Π(t, tw) '
1 if t� τmax and Π(t, tw) ' 0 if t� τmax.

Table 1. Values of αexp corresponding to the experiments in
Section 2. We have indicated the estimated values of T/Tg and
the estimated value of the glass cross-over temperature Tg.

Compound T (mK) αexp T/Tg Tg (mK)
(TMTSF)2PF6 200 0.4 1.4 142
(TMTSF)2PF6 400 0.5 1.5 267
(TMTSF)2PF6 500 0.7 1.7 294

AsF6 150 0.6 1.6 94
AsF6 240 1.2 2.2 109
TaS3 110 0.3 1.3 83
TaS3 165 0.8 1.8 92

(ii) If t, tw � τmax, the system has no time to “experience”
the existence of the maximal energy barrier Emax. The
out-of-equilibrium relaxation is identical to the model
discussed in Appendix A.

3.3 Relaxation above the glass cross-over
temperature Tg

Relaxation above the glass cross-over temperature is di-
rectly relevant to experiments. Above the glass cross-over
temperature the correlation function deduced from the ap-
proximations in Appendix A are found to be

Π1(t, tw) ' 2
(

1− Tg
T

)(τ0
t

)T/Tg tw
τ0

if tw � t� τmax (10)

Π1(t, tw) '
(τ0
t

)T/Tg−1

if t� tw � τmax (11)

Π1(t, tw) '
(τ0
t

)T/Tg−1

if t� τmax � tw. (12)

The spectrum of relaxation times is a power-law if t �
tw � τmax: ∂Π1/∂ ln t ∼ t1−T/Tg . The exponent 1− T/Tg
does not depend on tw. This coincides with the experi-
mental behavior discussed in Section 2 (see Figs. 2 and 4).
The model can be used to deduce an estimate of the glass
cross-over temperature Tg from the exponents obtained
in experiments (see Sect. 2). Tg is related to the expo-
nent αexp appearing in the experimental power-law relax-
ation spectrum Ptw(log10 t) ∼ t−αexp through the relation
T/Tg = 1 + αexp. The values of αexp and the estimations
of Tg deduced from the correspondence between the exper-
iments and the REM-like trap model have been given on
Table 1. For the three compounds (TMTSF)2PF6, AsF6

and TaS3, the exponent αexp is increasing with temper-
ature which constitutes a qualitative agreement between
experiments and the REM-like trap model. The values
of Tg are of the order of Tg = 100÷ 200 mK. We should
note that the model cannot be used to describe heat pulse
relaxation in the regime t � tw. Namely Figure 2 and
Figure 5 suggest that the exponent αexp is the same if
t � tw or tw � t while equations (10–12) would predict
a different power-law in the regimes t � tw and tw � t.
This is an indication that the exponential trap distribu-
tion with a cut-off is not well suited to describe the short
time dynamics.
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4 Collective dynamics in a strong pinning
model

4.1 The model

Let us now consider the microscopic model discussed by
several authors in references [52–56] that is used to de-
scribe the pinning of a disordered CDW:

H =
vF
4π

∫
dx
(
∂ϕ(x)
∂x

)2

+ w

∫
dx [1− cosϕ(x)]

−
∑
i

Vi [1− cos (Qxi + ϕ(xi))] . (13)

The first term in equation (13) is the elastic energy, the
second term is the interchain interaction, and the third
term is the pining potential. The charge density wave vec-
tor is Q and the impurities are at random positions xi
along the chain.

4.2 One strong pinning impurity

Let us recall the solution of the one-impurity model dis-
cussed in references [55,56]. With Vi = 0, ϕ(x) is the so-
lution of the sine Gordon-like equation

w sinϕ(x) − vF
2π

∂2ϕ(x)
∂x2

− V δ(x− x1) sinϕ(x) = 0. (14)

The low-energy solutions are dipoles made of a superpo-
sition of two solitons:

tan
(
ϕ(x)

4

)
= tan

(
ψ

4

)
exp

(
−|x− x1|

ξ0

)
. (15)

The width of the soliton is

ξ0 =
√

vF
2πw

· (16)

For commensurate impurities having Qx1 = 0, ψ is the
solution of cos (ψ/2) = V

(1)
c /V , where the one-impurity

pinning threshold is given by V
(1)
c =

√
2wvF /π. With

V > V
(1)
c there is one unstable solution (ψ = 0) and there

are two stable solutions ψ = ±2 arccos (V (1)
c /V ). The sin-

gle impurity solutions are degenerate and their total en-
ergy is E(1)

tot = −2(V − V (1)
c )2/V . With incommensurate

impurities (Qx1 6= 0), ψ is the solution of

2vF
πξ0

sin
(
ψ

2

)
= V sin (Qx1 + ψ). (17)

The dipolar low-energy excitations were discussed in
reference [56] for independent impurities close to com-
mensurability (Qx1 � 1). Equation (17) can be solved
numerically if Qx1 is not a small parameter.

Another way of solving the one-impurity model is to
consider the soliton profile given by (15) as a variational

solution parametrized by ψ. The energy landscape associ-
ated to a single impurity is the following:

E
(1)
tot(X0) = − 1

(1 +X2
0 )2
{A(x1) +B(x1)X0

− (16wξ0 − C(x1))X2
0

−B(x1)X3
0 − (16wξ0 −A(x1))X4

0

}
, (18)

where X0 = tan (ψ/4). The coefficients A(x1), B(x1) and
C(x1) are given by

A(x1) = 2V sin2 (Qx1) (19)
B(x1) = 4V sin (Qx1) (20)
C(x1) = 2V [1 + 3 cos (Qx1)] . (21)

Minimizing equation (18) with respect toX0 leads directly
to equation (17). For commensurate impurities there are
two degenerate energy minima separated by an energy
barrier. For incommensurate impurities the two energy
minima are not degenerate (there is a metastable state).

4.3 Two strong pinning impurities

The purpose of this section is to replace a cluster made
of two impurities by a single effective impurity. We start
with the case of two impurities that are close to each other
(|x2 − x1| � ξ0). The opposite limit |x2 − x1| � ξ0 is dis-
cussed in a straightforward fashion because in this case the
two impurities have an independent dynamics. An approx-
imate solution for an arbitrary |x2−x1| can be obtained by
interpolating between the two limiting cases |x2−x1| � ξ0
and |x2 − x1| � ξ0.

4.3.1 Variational soliton profile

We look for variational solutions describing two impurities
at positions x1 and x2 > x1 under the form tan (ϕ(x)/4) =
F (x), with

F (x) = tan
(
ψ1

4

)
exp

(
−|x− x1|

ξ0

)
+ tan

(
ψ2

4

)
exp

(
−|x− x2|

ξ0

)
, (22)

where ψ1 and ψ2 are variational parameters that can be
determined by minimizing the total energy obtained from
the soliton profile (22). If the distance between the two
impurities is much smaller than ξ0 (|x2 − x1| � ξ0) the
two-impurity energy landscape E(2)

tot (X0) is a function of
the single parameter X0 given by

X0 = tan
(
ψ1

4

)
+ tan

(
ψ2

4

)
. (23)
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4.3.2 Commensurate impurities in the limit |x2 − x1| � ξ0

Let us now consider the situation where the two impurities
at positions x1 and x2 are commensurate and the distance
between the two impurities is small compared to the width
of the soliton (|x2−x1| � ξ0). The total energy of the two-
impurity system takes the form

E
(2)
tot(X0) =

16X2
0

(1 +X2
0 )2

{
wξ0 − V + wξ0X

2
0

}
·

The ground state is such that ∂E(2)
tot(X∗0 )/∂X0 = 0, which

leads to

X∗0 =

√
V − wξ0
V + wξ0

(24)

E
(2)
tot (X∗0 ) = − 4

V
(V − wξ0)2 . (25)

We make two remarks:

(i) The pinning threshold associated to two commensu-
rate impurities such that |x2 − x1| � ξ0 is V (2)

c =
wξ0 = 2V (1)

c , equal to two times the pinning thresh-
old associated to a single impurity. The interaction be-
tween impurities increases the pinning threshold and
favors the so-called “collective pinning” regime corre-
sponding to V < V

(2)
c , as opposed to the “strong pin-

ning” regime corresponding to V > V
(2)
c .

(ii) In the limit of strong impurity pinning (V � wξ0),
there are two energy minima corresponding to X0 =
tan (ψ/4) + tan (ψ′/4) = ±1 and having an energy
E

(2)
tot (X∗0 ) = −4V . These two minima are separated

by the saddle point X ′0 = tan (ψ/4) + tan (ψ′/4) = 0
having an energy E

(2)
tot (X ′0) = 0. If V � wξ0 and

|x2 − x1| � ξ0, the energy barrier associated to the
two impurity system is∆E(2) = Etot(X ′0)−Etot(X0) =
4V , equal to two times the energy barrier associated
to a single impurity: ∆E(1) = 2V (see Sect. 4.2). This
shows that the interaction between impurities makes
the system more glassy.

4.3.3 Incommensurate impurities in the limit |x2 − x1| � ξ0

The energy landscape associated to two incommensurate
impurities at a distance much smaller than the soliton
width (|x2 − x1| � ξ0) can be reduced to an effective
single impurity energy landscape:

E
(2)
tot(X0) = − 1

(1 +X2
0 )2

{
Ã0 + B̃0X0

−
(

16wξ0 − C̃0

)
X2

0 − B̃0X
3
0 −

(
16wξ0 − Ã0

)
X4

0

}
·

(26)

The coefficients Ã0, B̃0 and C̃0 are obtained as the sum
of the coefficients associated to the single impurity en-
ergy landscapes given by equations (19–21): Ã0 = A(x1)+
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Fig. 8. Energy landscape E
(1)
tot(X) versus X given by Equa-

tion (18) of two isolated impurities being far apart and such
that Qx1 = π/8 (◦) and Qx2 = π/4 (�). If these two impuri-
ties are at a distance much smaller than ξ0 the two-impurity
system can be represented by an effective impurity having an

energy landscape E
(2)
tot(X) (see Eq. (26)). The energy landscape

E
(2)
tot(X) is also shown on the figure (�).

A(x2), B̃0 = B(x1)+B(x2), and B̃0 = C(x1)+C(x2). The
form (26) of the two-impurity energy landscape can be un-
derstood as follows. The elastic and interchain energy of
the two-impurity model are identical to the one-impurity
model if one uses the variables X0 = tan (ψ/4) for the
one-impurity system and X0 = tan (ψ/4) + tan (ψ′/4) for
the two-impurity system. The pinning energy is additive
since the phase of the CDW at x1 is approximately equal
to the phase of the CDW at x2 if |x2 − x1| � ξ0.

4.3.4 Limit |x1 − x2| � ξ0

If the two impurities are at a distance much larger than
the soliton width (|x2−x1| � ξ0) the two impurities have
an independent dynamics. The two impurities are char-
acterized by the coefficients (A1, B1, C1) and (A2, B2, C2)
(see Eq. (18)). The two decoupled impurities can be re-
placed by a single impurity characterized by the coeffi-
cients (Ã∞, B̃∞, C̃∞). The coefficients (Ã∞, B̃∞, C̃∞) cor-
respond either to (A1, B1, C1) if the impurity at position
x1 has the longest relaxation time or to (A2, B2, C2) if the
impurity at position x2 has the longest relaxation time.

4.3.5 Interpolation between the limits |x2 − x1| � ξ0 and
|x2 − x1| � ξ0

An arbitrary value of the distance between the impurities
can be treated by interpolating between the two limiting
cases |x2 − x1| � ξ0 and |x2 − x1| � ξ0 discussed above.
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(a)

(b)

(c)

Fig. 9. Schematic representation of the formation of correlated
objects in the collective dynamics. (a) corresponds to decou-
pled impurities (which is the initial condition of the RG flow at
time t0). (b) corresponds to a time t1 > t0. (c) corresponds to
a time t2 > t1 > t0. The correlation length is increasing with
time: ξ(t2) > ξ(t1) > ξ(t0).

Namely we suppose that the energy landscape at an arbi-
trary distance |x2 − x1| is still given by equation (26):

E
(2)
tot(X0) = − 1

(1 +X2
0 )2

{
Ã+ B̃X0 −

(
16wξ0 − C̃

)
X2

0

−B̃X3
0 −

(
16wξ0 − Ã

)
X4

0

}
, (27)

and that the coefficients Ã, B̃ and C̃ interpolate between
the solutions already obtained in the limits |x2−x1| � ξ0
and |x2 − x1| � ξ0:

Ã = Ã∞ +
(
Ã0 − Ã∞

)
exp

(
−|x2 − x1|

ξ0

)
(28)

B̃ = B̃∞ +
(
B̃0 − B̃∞

)
exp

(
−|x2 − x1|

ξ0

)
(29)

C̃ = C̃∞ +
(
C̃0 − C̃∞

)
exp

(
−|x2 − x1|

ξ0

)
. (30)

The correlations mediated by the gaped medium decay
exponentially with distance and this is why we use an
exponential interpolation in equations (28–30).

4.4 Dynamical RG

Now we discuss the collective dynamics of the model
defined by equation (13). The method is similar to
reference [10] and consists in eliminating the fastest de-
grees of freedom (see Fig. 9). There is a smallest relaxation
time τmin (being the smallest of the relaxation times of
individual impurities) that increases in the course of the
RG. Assuming a broad distribution of relaxation times,
the density of relaxation times is given by the number of
impurities ρ(τmin)δτmnin that are eliminated as the small-
est relaxation time is increased from τmin to τmin + δτmin.

We consider that the initial condition of the dynamics
is a quench from high temperature. The initial condition of
the RG flow corresponds to uncorrelated impurities. The
experiments discussed in Section 2 correspond to a differ-
ent initial condition but it is expected that the two types
of initial conditions can be used to discuss the qualitative
physics.
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Fig. 10. Distribution of the logarithm of the relaxation times
with an incommensurate CDW wave vector (Q =

√
2 ' 1.41).

The distribution of relaxation times has been obtained with
N = 500 impurities and averaged over 100 realizations of dis-
order. The parameters of the strong pinning Hamiltonian given
by equation (13) are vF = 1, w = 5× 10−6, Vi = 56× 10−3 for
all sites i. The correlation length in the simulation is ξ = 178a0,
with a0 the lattice spacing. The one-impurity pinning threshold
is Vc = 5.6×10−3 . The impurity concentration is x = 0.05� 1.
The temperature in units of vF corresponding to the differ-
ent curves are: T = 2.6 × 10−3 (�), T = 1.3 × 10−3 (�),
T = 0.67 × 10−3 (◦), T = 0.35 × 10−3 (•). The parameters
are such that the width of the soliton ξ and the ratio T/vF
have the correct order of magnitude. For instance ξ ' 4000 Å
in CDW compounds and a0 ' 3 ÷ 7 Å (a0 = 3.34 Å in
TaS3 and a0 = 7.3 Å in (TMTSF)2PF6). We deduce that
ξ ' 500÷ 1000a0 which is compatible with the value of ξ used
in the simulation. The value of the impurity concentration x is
also realistic in the sense that it has been shown experimentally
that the introduction of 0.5% of extrinsic impurities does not
modify the slow relaxation properties so that x is presumably
larger than 0.5%.

The energy landscape of an impurity at site xi is
characterized by the coefficients (A(xi), B(xi), C(xi)) (see
Eq. (18)) and by a relaxation time τi. We note by τmin =
Min{τi} the smallest of these relaxation times correspond-
ing to impurity i0. The impurity i0 has two neighboring
impurities: one at the left (site iL) and one at the right
(site iR). The relaxation times of the impurities at sites iL
and iR are τL and τR. There are two possibilities to elim-
inate the impurity at site i0:

(i) Transform the two impurities at sites i0 and iL into
an effective impurity at site i′L having a relaxation
time τ ′L.

(ii) Transform the two impurities at sites i0 and iR into
an effective impurity at site i′R having a relaxation
time τ ′R.

The transformation (i) is implemented if τ ′L < τ ′R. The
transformation (ii) is implemented if τ ′R < τ ′L.

The distribution of relaxation times is shown in
Figure 10 for an incommensurate CDW wave vector and in
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Fig. 11. Distribution of the relaxation times in the presence
of commensurate impurities having Q = 0. The Hamiltonian
parameters are identical to Figure 10. The temperature in units
of vF are: T = 2.6 × 10−3 (�), T = 1.9 × 10−3 (�), T =
1.3× 10−3 (◦), T = 0.95× 10−3 (•).
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Fig. 12. The same as Figure 10 but with non interacting im-
purities (this is the initial condition of the RG flow).

Figure 11 for a commensurate CDW wave vector. The two
systems are qualitatively similar in the sense that (i) the
collective dynamics generates a broad spectrum of relax-
ation times; and (ii) there is a maximum relaxation time
τmax. At long times, the spectrum of relaxation times is
approximately a power-law, which is not against the ex-
periments discussed in Section 2. For comparison we have
shown in Figure 12 the distribution of relaxation times of
non interacting strong pinning impurities with the same
parameters as Figure 10. There is already a distribution
of relaxation times associated to independent impurities
which is due to the fact that the energy landscape associ-
ated to an impurity at position x1 depends on the coordi-

��
��
��

��
��
��

��
��
��

��
��
��

Non magnetic deffects

Spin−1/2 moments

Singlets

Fig. 13. Schematic representation of non magnetic substitu-
tions in a spin-Peierls system. We assume that the spin-1/2
solitonic moments have a slow dynamics.

nate x1 through equations (19–21). But the distribution
of relaxation times of interacting impurities is obviously
much broader than the distribution of relaxation times of
non interacting impurities (see Figs. 10 and 12). Given
that there are evidences that a broad spectrum of relax-
ation times is present in the slow relaxation experiments
either for commensurate of incommensurate systems, we
conclude that the long time dynamics of disordered CDWs
and SDWs is a collective phenomenon that can be qualita-
tively captured by the dynamical RG of the strong pinning
model. The small time dynamics can be well approximated
by independent impurities corresponding to Figure 12 on
the condition that the initial condition is a quench from
high temperature.

5 Collective dynamics in a disordered
spin-Peierls system

5.1 The model

Now we consider the model introduced in
references [30,44,45] to describe non magnetic sub-
stitutions in spin-Peierls and Haldane gap systems (see
Fig. 13). In this model non magnetic impurities in a
dimerized system generate solitonic spin-1/2 moments out
of the non magnetic singlets. Two spin-1/2 moments at
distance l are coupled by an antiferromagnetic exchange
J(l) = ∆ exp (−l/ξ0) that decays exponentially with
distance. ξ0 is the correlation length associated to the
gaped background. There is an energy barrier associated
to the dynamics of an isolated soliton in CDWs and
SDWs (see for instance Fig. 8) which explains that the
microscopic time τ0 is of order of 1 sec (see [46–48]).
The model proposed for non magnetic substitutions in
CuGeO3 can thus be “transformed” into a model of slow
relaxation in CDWs and SDWs just by changing the
time scale τ0 associated to the dynamics of individual
solitonic spin-1/2 moments. From this analogy we deduce
an expression of the glass cross-over temperature of
disordered CDWs and SDWs.

We represent the solitonic spin-1/2 degrees of freedom
in the spin-Peierls system by Ising spins distributed at
random in 1D (see Fig. 14) and use a Glauber dynamics.
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σσ σ σ σ σ321 4 5 6

Fig. 14. Schematic representation of the Ising model. The
spins σi are distributed at random in 1D and interact with the
Hamiltonian (31).

The Ising spins σi interact with the Hamiltonian

H = −
∑
〈i,j〉

Ji,jσiσj , (31)

where the exchange Ji,j decays exponentially with dis-
tance (see Refs. [44,45]):

Ji,j = ∆ exp
(
−di,j
ξ0

)
. (32)

∆ is the spin gap, ξ0 is the correlation length associated
to the CDW without disorder (see Eq. (16) for the ex-
pression of ξ0 in the strong pinning model), and di,j is the
distance between the Ising spins at sites i and j. Since
there is no frustration the dynamics of the ferromagnetic
and antiferromagnetic models are equivalent and we use
here the ferromagnetic model. The single spin flip Glauber
dynamics of the model defined by equations (31) and (32)
is given by the master equation [58]

d
dt
P ({σ}, t) = −

N∑
i=1

wi{σ}P ({σ}, t)

+
N∑
i=1

wi{σ1, ...,−σ̌i, ..., σN}P ({σ1, ...,−σ̌i, ..., σN}, t) ,

(33)

where the transition rates take the form

wi{σ} =
ri
2

1− σi tanh

βJi,j ∑
j∈V (i)

σj

 , (34)

where V (i) is the set of neighbors of site i. The form
of the transition rates given by equation (34) ensures
that the detailed balance is verified: PB{σ}wi{σ} =
PB{σ′}wi{σ1, ...,−σ̌i, ..., σ}, where PB{σ} is the Boltz-
mann distribution.

5.2 Two-spin model

Following references [30,44,45] we consider the model de-
fined by equations (31) and (32) for two Ising spins σ1

and σ2 at distance l. The distribution of distances is
P (l) = x exp (−xl) and the exchange (32) becomes J(l) =
∆ exp (−l/ξ0). The relaxation time associated to the two-
spin cluster can be obtained from the Glauber matrix de-
fined by (33): τ(l) = τ0 [1− tanh (J(l)/T )]−1. Since we

consider the long-time behavior, we use the approxima-
tion τ(l) ' τ0

2 exp [2J(l)/T ]. The typical relaxation time
follows an Aharenius behavior:

τ typ

τ0
= exp

(
〈〈ln

(
τ(l)
τ0

)
〉〉
)

=
1
2

exp
(

2xξ0
1 + xξ0

∆

T

)
.

(35)

The activation energy in equation (35) is equal to the av-
erage energy barrier given by 2〈〈J(l)〉〉 = 2xξ0/(1 + xξ0).
The average relaxation time is given by an Aharenius law
in limit of a small dilution of impurities (xξ0 � 1):

τav

τ0
= 〈〈τ(l)

τ0
〉〉 ' 1

4
xξ0T

∆
exp

(
2∆
T

)
. (36)

The activation energy in equation (36) is equal to the
largest energy barrier given by 2Max[J(l)] = 2∆.

Comparing the typical relaxation time in the REM-
like model and the two-spin model (see Eqs. (5) and (36))
we obtain an estimate of the glass cross-over temperature
in terms of the microscopic parameters:

Tg =
2xξ0∆
1 + xξ0

(37)

which is equal to the average energy barrier. The estimate
of Tg given by equation (37) is similar to the estimate
of the Néel temperature of doped low dimensional oxides
discussed in references [44,45]. In both cases the physics
is controlled by correlations among the solitons.

5.3 RG of the disordered 1D Ising model

Let us consider two Ising spins σ1 and σ2 coupled by a
ferromagnetic exchange J and replace these two spins by
an effective Ising spin σ̃. We note τ1 and τ2 the relax-
ation times of the spins σ1 and σ2 and we note r1 = 1/τ1
and r2 = 1/τ2 the transition rates. The Glauber matrix of
the two-spin system can be diagonalized by forming sym-
metric and antisymmetric combinations of the occupation
probabilities [61]. We deduce the transition rate r̃ of the
effective spin σ̃:

r̃ =
1
2

{
r1 + r2 −

√
(r1 − r2)2 + 4r1r2 tanh2 (βJ)

}
·

(38)

The couplings J̃L and J̃R between the effective spin σ̃
and its neighboring spins (see Fig. 15) can be obtained by
equating the partition function of the four-spin system and
the partition function of the three-spin system, leading to

J̃R = T arg cosh
[√

2
√

cosh (βJ) cosh (βJR)
]

(39)

J̃L = T arg cosh
[√

2
√

cosh (βJ) cosh (βJL)
]
. (40)

The RG transformations can be iterated by eliminat-
ing the smallest relaxation time τmin = Min{τ (1)

i , τ
(2)
i,i+1}
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i − 1

τL τ i + 1 τ Ri τ
00

i0 0
i + 1 i + 2

00

JL JR

τL τRJL JRτ

i − 10
i + 20

(b)

(a)

Fig. 15. Representation of the RG transformation. The pair
of spins (σi0 , σi0+1) is replaced by the effective Ising spin σ̃
having a relaxation rate r̃ = 1/τ̃ given by equation (38).
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Fig. 16. Distribution of the logarithm of the relaxation times
of the random Ising model defined by (31) and (32) with the
parameters ∆ = 1, ξ = 10, and x = 0.05, with four different
temperatures: T = 1 (�), T = 0.5 (�), T = 0.25 (◦) and
T = 0.125 (•). The “microscopic” time scale is τ0 = 1.

which is either the relaxation time τ
(1)
i associated to a

single spin or the relaxation time τ (2)
i,i+1 associated to the

pair of spins (i, i+ 1).
The distribution of logarithm of the relaxation times

is shown in Figure 16. Because of the collective dynam-
ics there is a broad distribution of relaxation times and a
maximum relaxation time τmax, which is compatible with
the experiments discussed in Section 2. The disordered
spin-Peierls system discussed in this section has thus the
same behavior as the disordered strong pinning model dis-
cussed in Section 4. In the case of the Ising model (see
Fig. 16) the RG generates only time scales that are larger
than τ0. In the case of the disordered strong pinning model
the RG generates time scales that are also smaller than
τ0 (being the relaxation time of individual solitons) which
explains the origin of the maximum in the relaxation time
spectrum (see Fig. 10).

6 Conclusion

To conclude we have discussed the collective dynamics
of randomly distributed solitons and shown that this ap-
proach was relevant to disordered CDWs and SDWs. We
have proposed a phenomenological REM-like model that
in good agreement with experiments. Since the article was
already summarized in the Introduction, we end-up with
open questions:

(i) We assumed that the solitons are decoupled from each
other in the initial condition of the RG. This corre-
sponds to a quench from high temperature. The initial
condition relevant to the experiments in Section 2 is
different because the dynamics starts from an equilib-
rium state and a small temperature variation is ap-
plied. It has been pointed out that there can be a
specific dynamics associated to the temperature de-
pendence of the equilibrium correlation length [62] and
it is thus a relevant question to examine similar issues
in CDWs and SDWs.

(ii) We have assumed that only charge or spin degrees of
freedom were relevant in CDWs or SDWs. The in-
terplay between charge and spin degrees of freedom
raises many questions already in pure systems (see for
instance [63]). It is an open question to examine the
physics associated to defects in the presence of a charge
and a spin sector. The interplay between charge and
spin degrees of freedom could explain the effect of a
magnetic field on the slow relaxation properties where
it was observed that a weak magnetic field has an effect
on the relaxation time spectra [64].

Finally, it would be interesting to test the existence
of slow dynamics effects in other types of experiments,
such as dielectric response. Indeed, it is suggested in ref-
erence [50] that the residual so-called “β0 process” could
be the link to the low-T , slow heat relaxation phenomena.
Dielectric experiments in the temperature range of 1 K
and below are planned to test this hypothesis.

One of us (R.M.) acknowledges fruitful discussions on related
topics with J.C. Anglès d’Auriac, F. Iglói and J. Souletie.

Appendix A: Weak ergodicity breaking
in a REM-like trap model

In this Appendix we discuss a REM-like trap model hav-
ing p(Eα) = p0(Eα) = 1

Tg
exp (−Eα/Tg) that was intro-

duced in connection with the so-called “weak ergodicity
breaking” property in reference [49]. We first recall in sec-
tion A.1 the exact solution used by Bouchaud and Dean
in reference [49] in their discussion of the weak ergodicity
breaking property. We give in Section A.2 a set of approx-
imations that can be used to recover the weak ergodicity
breaking property. Similar approximations are used in the
main body of the article (in Sect. 3) for the REM-like
trap model of disordered CDWs. For this model relevant
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to disordered CDWs it is not possible to use the same ex-
act solution as Bouchaud and Dean and this is why we are
lead to use a set of well controlled approximations.

A.1 Weak ergodicity breaking via an exact solution

The authors of reference [49] could demonstrate the so-
called “weak ergodicity breaking” property in a model
having p(Eα) = p0(Eα) = 1

Tg
exp (−Eα/Tg). We note

Pα(tw) the probability to find the system in trap α at time
tw. The evolution of the system is given by the Glauber
dynamics [58]

d
dtw

Pα(tw) = −
N∑

β=1,β 6=α
wα→βPα(tw)

+
N∑

β=1,β 6=α
wβ→αPβ(tw), (A1)

where the transition rates are given by wα→β =
r0 exp (−βEα) and wβ→α = r0 exp (−βEβ), with τ0 =
1/r0 the microscopic time scale and β = 1/T the in-
verse temperature. To solve equation (A1), it is convenient
to make a Laplace transform with respect to the waiting
time:

P̃α(E) =
∫ +∞

0

Edtw exp (−Etw)Pα(tw).

In Laplace transform, the Glauber dynamics equa-
tion (A1) becomes

EP̃α(E) +Nr0e−βEαP̃α(E) =
E

N
+
∑
β

r0e−βEβ P̃β(E).

(A2)

The solution of equation (A2) is found to be

P̃α(E) =
fE(τα)∑
β fE(τβ)

, (A3)

with fE(τα) = Eτα/(1 + Eτα), and with τα =
exp (βEα)/(Nr0) the average trapping time in trap α. The
expression of the Laplace transform of the dynamical cor-
relation function is given by

Π̂0(t, E) =
∫ +∞

0

p0(Eα)P̃α(E) exp [−t/τα]dEα. (A4)

The presence of a dynamical glass transition can be seen
from the divergence of the average relaxation time

τav

τ0
= 〈〈τα

τ0
〉〉 =

∫ +∞

0

p0(Eα)
τα
τ0

dEα =
T

T − Tg
(A5)

while the typical relaxation time

τ typ

τ0
= exp

[
〈〈ln

(
τα
τ0

)
〉〉
]

= exp
[
Tg
T

]
(A6)

follows an Aharenius behavior. Using (A3), we obtain the
correlation function

Π̂0(t, E) =

∫ +∞
τ0

p0(τ)fE(τ)e−t/τdτ∫ +∞
τ0

p0(τ)fE(τ)dτ
· (A7)

The denominator can be evaluated by replacing fE(τ) by
f0(τ) defined as f0(τ) = Eτ if τ < 1/E and f0(τ) = 1 if
τ > 1/E. This leads to∫ +∞

τ0

p0(τ)fE(τ)dτ ' τ−T/Tg0

1
1− T/Tg

×
{
Tg
T

(Eτ0)T/Tg −Eτ0
}
·

Since the waiting time is large compared to τ0, one has
Eτ0 � 1 and therefore∫ +∞

τ0

p0(τ)fE(τ)dτ ' Tg
T (1− T/Tg)

ET/Tg .

To evaluate the inverse Laplace transform of
equation (A7), Bouchaud and Dean used the change
of variable u = fE(τ), from what they deduced the exact
result

Π0(t, tw) =
T

Tg

(
1− T

Tg

)∫ 1

t
t+tw

(1− u)T/Tg−1u−T/Tgdu,

(A8)

which is valid if T < Tg. In the limiting cases t/(t+tw)� 1
and t/(t+ tw) ' 1, equation (A7) reduces to

Π0(t, tw) ' 1− T

Tg

(
t

t+ tw

)1−T/Tg

if t/(t+ tw)� 1 (A9)

Π0(t, tw) '
(

1− T

Tg

)(
tw

t+ tw

)T/Tg
if t/(t+ tw) ' 1. (A10)

The correlation function Π0(t, tw) tends to zero if tw is
finite and t→ +∞ while it tends to unity if t if finite and
tw → +∞, which constitutes the so-called “weak ergodic-
ity breaking” property [49].

A.2 Weak ergodicity breaking via an approximate
solution

Now let us give a set of approximations that can be
used to recover the weak ergodicity breaking property.
These approximations will be applied to another model in
Section 3 in a situation where we cannot use the change
of variable leading to (A8). The approximations are the
following: (i) We replace fE(τ) by f0(τ) in the expres-
sion (A7) of Π̂0(t, E); (ii) We replace the exponential
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exp (−t/τ) by the θ-function θ(τ − t). We deduce the
Laplace transform of the dynamical correlation function

Π̂0(t, E) ' 1− T

Tg
(Et)1−T/Tg if Et < 1 (A11)

Π̂0(t, E) ' (1− T

Tg
)(Et)−T/Tg if Et > 1. (A12)

The inverse Laplace transform is evaluated within the
same approximations. Namely we replace exp (−t/τα) by
θ(τα − t). This leads to

Π̂0(t, E) '
∫ 1/E

0

EdtwΠ0(t, tw),

from what we deduce

Π0(t, tw) =
∂

∂(1/E)

[
Π0(t, E)

E

]
E=1/tw

.

The final form of the correlation function is found to be

Π0(t, tw) ' 1−
(
T

Tg

)2(
t

tw

)1−T/Tg
if t < tw (A13)

Π0(t, tw) '
[

1−
(
T

Tg

)2
](

tw
t

)T/Tg
if tw < t. (A14)

The approximate correlation functions given by (A13–
A14) reproduce well the asymptotic behavior of the ex-
act solution given by (A9–A10) except for the prefactors
that are not relevant to our discussion. The qualitative
physics of the model (namely the weak ergodicity break-
ing property) can thus be reproduced from these approx-
imations. We use the same approximations in the main
body of the article for the model having the trap energy
distribution (3) for which we cannot use the exact solution
anymore.
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B 57, 10755 (1998).

36. P.M. Hansen, J.A. Riera, A. Delia, E. Dagotto, Phys. Rev.
B 58, 6258 (1998).

37. P. Hansen, D. Augier, J. Riera, D. Poilblanc, Phys. Rev.
B 59, 13557 (1999).

38. E. Sorensen, I. Affleck, D. Augier, D. Poilblanc, Phys. Rev.
B 58, R14701 (1998).

39. T. Kennedy, J. Phys. Cond. Matt. 2, 5737 (1990).

40. M. Hagiwara, K. Katsumata, I. Affleck, B.I. Halperin, J.P.
Renard, Phys. Rev. Lett. 65, 3181 (1990).

41. E. S. Sørensen, I. Affleck, Phys. Rev. B 51, 16115 (1995).

42. S. Yamamoto, S. Miyashita, Phys. Rev. 50, 6277 (1994).

43. R.N. Bhatt, P.A. Lee, Phys. Rev. Lett. 48, 344 (1982).
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48. K. Biljaković, J.C. Lasjaunias, P. Monceau, F. Levy, Phys.
Rev. Lett. 62, 1512 (1989); K. Biljaković, J.C. Lasjaunias,
P. Monceau, F. Levy, Phys. Rev. Lett. 67, 1902 (1991).

49. J.P. Bouchaud, J. Phys. I France 2, 1705 (1992); J.P.
Bouchaud, E. Vincent, J. Hamman, J. Phys. I France 4,
139 (1994); J.P. Bouchaud, D.S. Dean, J. Phys. I France
5, 265 (1995); C. Monthus, J.P. Bouchaud, J. Phys. A 29,
3847 (1996).
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